Electrical Engineering Course Description

 

ECE 5101 (3 credits) Introduction to System Theory
Modeling and analysis of linear systems. Introduction to functions of a complex variable. Linear algebra with emphasis on matrices, linear transformations on a vector space, and matrix formulation of linear differential and difference equations. State variable analysis of linear systems. Transform methods using complex variable theory, and time-domain methods including numerical algorithms.

 

ECE 5510  Power System Analysis

Fundamentals of power system planning, operation, and management. Power generation and distribution. Modeling of AC generator, AC and DC motors, transformer, and cable. Power flow solution. Modern power system monitoring/control, fault analysis, and transient stability analysis using computer tools. Use of power system simulation tools for power system planning and design.

Prerequisite: ECE 2001 – Electrical Circuits or equivalent

 

ECE 5512  Power Distribution

Principles of distribution system planning, automation and real-time operation with applications. Concepts of AC/DC Electricity. Three-phase power distribution as well as DC and Hybrid circuits. Load flow calculations, fault analysis, and reliability evaluation. Distributed power resources. Distribution system protection and reconfiguration. Smart distribution technologies. Efficient and resilient energy utilization.

Prerequisite: ECE 3231 – Introduction to Modern Power Systems or equivalent

 

ECE 5520  Advanced Power Electronics

Advanced converter and inverter topologies for high efficiency applications. Non-ideal component characteristics. Necessary components such as gate drive circuits and magnetic component design (that are not covered in introductory power electronics courses).

Prerequisite: ECE 3211 – Power Electronics or equivalent

 

ECE 5540  Electrical System Protection and Switchgear

Methods to sense voltage and current in medium and low voltage applications. Voltage sensing techniques include differential voltage amplifiers, shunt voltage measurement, and potential transformers. Current sensing techniques include current transformers, Rogowski coils, series voltage measurement, and Hall-effect sensors. Solid-state and mechanical relays and timing functions. Fuses and circuit breakers at medium voltage levels with the focus on ratings, application-specific selection, and response time. Protection methods, e.g. differential protection, of transformers, generators, and cables with the focus on distance relays and specialized devices.

Prerequisite: Instructor’s consent

Recommended preparation: ECE 3212 – Electric Machines and Drives or equivalent

 

ECE 6095 (1 – 3 Credits) Special Topics in Electrical and Systems Engineering

Classroom and/or laboratory courses in special topics as announced in advance for each semester.

 

ECE 6104 (3 Credits) Info Control & Games

Problems of static and dynamic optimization where more than one decision maker is involved, each having own payoff and access to different information. Review of elementary decision and control theory, non-cooperative games, cooperative games, bargaining models, differential games, team decision theory, Nash games, Stackelberg games (leader-follower problems). Introduction to large-scale systems and hierarchical control.

Prerequisite: ECE 5101 and ECE 6111

 

ECE 6108 (3 Credits) Linear Programming and Network Flows

Computational methods for linear programming with special emphasis on sequential and parallel algorithms for Network Flow Problems. Standard and canonical forms of linear programming, revised Simplex methods, basis updates, decomposition methods, duality, shortest paths, minimal spanning trees, maximum flows, assignment problems, minimum cost network flows, and transportation problems.

Prerequisites: ECE 5101

 

ECE 6111 (3 Credits) Applied Probability and Stochastic Processes

Statistical methods for describing and analyzing random signals and noise. Random variables, conditioning, and expectation. Stochastic processes, correlation, and stationarity. The response of linear systems to stochastic inputs.

 

ECE 6122 (3 Credits) Digital Signal Processing

Discrete-time signals and systems. The z-transform. The Discrete Fourier Transform (DFT). Convolution and sectioned convolution of sequences. IIR and FIR digital filter design and realization. Computation of the DFT: The Fast Fourier Transform (FFT), algorithms. Decimation and interpolation. Parametric and nonparametric spectral estimation. Adaptive filtering. Finite word length effects.

 

ECE 6161 (3 Credits) Modern Manufacturing System Engineering

Issues and methods in modern manufacturing systems. Integrated product and process development. Design for quality, on-line quality control and improvement, reliability during product development, and design for testability. Computer-aided production management, production planning and scheduling, and optimization-based planning and coordination of design and manufacturing activities. Targeted toward students, professional engineers, and managers who want to have an impact on the state-of-the-art and practice of manufacturing engineering, and to improve manufacturing productivity.